Special Practice Problems sudhir jainam

Prepared by:

(Mains & Advanced) JEE

Differential Calculus & Integral Calculus

"We should not give up and we should not allow the problem to defeat us."-A P J ABDUL KALAM

• Objective Questions Type I [Only one correct answer]

In each of the questions below, four choices are given of which only one is correct. You have to select the correct answer which is the most appropriate.

- 1. Tangents are drawn from the origin to the curve $y = \sin x$, then their point of contact lie on the curve
 - (a) $x^2 + y^2 = 1$ (b) $x^2 - y^2 = 1$ (d) $\frac{1}{r^2} - \frac{1}{r^2} = 1$ (c) $\frac{1}{x^2} + \frac{1}{v^2} = 1$
- 2. The locus of all points on the curve
 - $y^2 = 4a\left(x + a\sin\left(\frac{x}{a}\right)\right)$ at which the tangent is parallel to

x-axis is

- (b) a circle (a) a straight line
- (d) an ellipse (c) a parabola
- 3. The angle of intersection of curves $y = [|\sin x| + |\cos x|]$ and $x^2 + y^2 = 5$, where [.] denotes the greatest integer function, is

(a) $\tan^{-1} 2$

(c) $\tan^{-1}(\sqrt{2})$

(b) $\tan^{-1}\left(\frac{1}{2}\right)$ (d) $\tan^{-1}\left(\frac{1}{\sqrt{2}}\right)$

- 4. If the normal to the curve y = f(x) at x = 0 be given by the equation 3x - y + 3 = 0, then the value $\lim_{x \to 0} x^2 \{f(x^2) - 5f(4x^2) + 4f(7x^2)\}^{-1}$ is (b) -1/4
 - (a) -1/5(c) -1/3

(d) -1/2

5. The slope of the normal at the point with abscissa x = -2of the graph of the function $f(x) = |x^2 - |x||$ is

0 <u>1</u>	1) 1/2
(a) -1/6	(b) -1/3
(a) 1/0	(d) 1/3
(c) 1/6	(d) 1/3

6. A spherical balloon is pumped at the rate of 10 inch³/ min, (c) 1/6 the rate of increase of its radius if its radius is 15 inch is

(a) $\frac{1}{30\pi}$ inch/min	(b) $\frac{1}{60\pi}$ inch/min
(c) $\frac{1}{90\pi}$ inch/min	(d) $\frac{1}{120\pi}$ inch/min

7. A ladder 20 ft long has one end on the ground and the other end in contact with a vertical wall. The lower end slips along the ground. If the lower end of the ladder is 16 ft away from the wall, upper end is moving λ times as fast as the lower end, then λ is

(a) $\frac{1}{3}$	ant the last	(b) $\frac{2}{3}$
(c) $\frac{4}{3}$		(d) $\frac{5}{3}$

- 8. A kite is moving horizontally at a height of 151.5 m. If the speed of the kite is 10 m/s, how fast is the string being let out, when the kite is 250 m from the boy who is flying the kite, the height of the boy being 1.5 m?
 - (b) 8 m/s (a) 4 m/s
 - (d) 32 m/s (c) 16 m/s
- The approximate value of square root of 25.2 is
 - (b) 5.02 (a) 5.01 (d) 5.04 (c) 5.03
- **10.** The approximate value of $(0.007)^{1/3}$ is
 - (a) $\frac{21}{120}$ $\frac{23}{120}$ (d) $\frac{31}{120}$ (c)

11. If $y = \ln \left(\frac{x}{a+bx}\right)^{x}$, then $x^{3} \frac{d^{2}y}{dx^{2}}$ is equal to is equal to (a) $\left(\frac{dy}{dx} + x\right)^2$ (b) $\left(\frac{dy}{dx} - y\right)^2$ (a) 14 (c) 1 (c) $\left(x\frac{dy}{dx}+y\right)^2$ (d) $\left(x\frac{dy}{dx}-y\right)^2$ 12. If $y = \left(\frac{ax+b}{cx+d}\right)$, then $2\frac{dy}{dx} \cdot \frac{d^3y}{dx^3}$ is equal to (a) 0 (c) 1 (a) $\left(\frac{d^2y}{dx^2}\right)^2$ (b) $3\frac{d^2y}{dx^2}$ is equal to (a) 2 (c) 3 (c) $3\left(\frac{d^2y}{dx^2}\right)^2$ (d) $3\frac{d^2x}{dy^2}$ **13.** If $x^y = e^{x-y}$, then $\frac{dy}{dx}$ is equal to (a) 1 (c) 0 (a) $(1 + \ln x)^{-1}$ (b) $(1 + \ln x)^{-2}$ (c) $\ln x (1 + \ln x)^{-2}$ (d) none of these 14. If $\frac{d^2x}{dy^2} \left(\frac{dy}{dx}\right)^3 + \frac{d^2y}{dx^2} = k$, then k is equal to to (a) -2(c) $\frac{1}{2}$ (a) 0 (b) 1 (c) 2 (d) none of these 15. If $y = (1 + x)(1 + x^2)(1 + x^4)...(1 + x^{2^n})$, then $\frac{dy}{dx}$ at x = 0 is (a) 0 equals (b) -1 (a) - 1 (c) 1 (d) none of these (c) 1 16. If $x = e^{y + e^{y + e^{y + e^{y + \cdots}}}}$, then $\frac{dy}{dx}$ is (a) $\frac{1}{r}$ (b) $\frac{1-x}{x}$ (c) $\frac{x}{1+r}$ (d) none of these 17. The derivative of $\sin^{-1}\left(\frac{2x}{1+x^2}\right)$ with respect to $\tan^{-1}\left(\frac{2x}{1-x^2}\right)$ is (a) $n^2 y$ (c) $n^2 y^2$ (a) 0 (b) 1 (c) $\frac{1}{1-r^2}$ (d) $\frac{1}{1+r^2}$ (a) -1 18. If $x^{y} \cdot y^{x} = 16$, then $\frac{dy}{dx}$ at (2, 2) is (c) log 2 29. The (a) -1 (b) 0 (d) none of these (c) 1 19. If $y^2 = P(x)$ is a polynomial of degree 3, then (a) (1,∞) (c) [0,∞) $2\frac{d}{dx}\left[y^3\frac{d^2y}{dx^2}\right]$ equals 30. If (a) P'''(x) + P'x(b) $P''(x) \cdot P'''(x)$ (a) 16 (c) $P(x) \cdot P'''(x)$ (c) 64 (d) none of these Answers Objective Questions Type I [Only one correct answer]

20. If $5f(x) + 3f\left(\frac{1}{x}\right) = x + 2$ and y = x f(x), then $\left(\frac{dy}{dx}\right)$ (b) 7/8 (d) none of these 21. If $2^x + 2^y = 2^{x+y}$, then the value of $\frac{dy}{dx}$ at x = y = 1 is (b) -1 (d) 2 22. If f(x) = |x - 2| and g(x) = fof(x), then for x > 20, g'(x)(b) 1 (d) none of these 23. If $f(x) = \sin^{-1}(\sin x) + \cos^{-1}(\sin x)$ and $\phi(x) = f(f(f(x)))$, then $\phi'(x)$ is equal to (b) $\sin x$ (d) none of these 24. If $f(x) = (\log_{\cot x} \tan x)$ $(\log_{\tan x} \cot x)^{-1} + \tan^{-1}\left(\frac{x}{\sqrt{(4-x^2)}}\right)$, then f'(0) is equal (b) 2 (d) 0 25. If $x^2 + y^2 = t - \frac{1}{t}$ and $x^4 + y^4 = t^2 + \frac{1}{t^2}$, then $x^3y \frac{dy}{dx}$ (b) 0 (d) none of these 26. If variables x and y are related by the equation $x = \int_0^y \frac{1}{\sqrt{(1+9u^2)}} du$, then $\frac{dy}{dx}$ is equal to (a) $\frac{1}{\sqrt{(1+9y^2)}}$ (b) $\sqrt{(1+9y^2)}$ (c) $(1+9y^2)$ (d) $\frac{1}{(1+0)^2}$ 27. If $y^{1/n} = \{x + \sqrt{(1 + x^2)}\}$, then $(1 + x^2) y_2 + xy_1$ is equal to (a) $n^2 y$ (b) ny^2 (d) none of these 28. If $f(x) = \cot^{-1}\left(\frac{x^x - x^{-x}}{2}\right)$, then f'(1) is (b) 1 orda $(d) - \log 2$ solution set of f'(x) > g'(x) where $f(x) = (1/2) 5^{2x+1}$ and $g(x) = 5^x + 4x \log_e 5$ is (b) (0, 1) (d) (0,∞) 1 to 152 Bd1 2 If f'(x) = g(x) and g'(x) = -f(x) for x and f(2) = 4 = f'(2), then $f^2(19) + g^2(19)$ is all (b) 32 (d) none of these

PAGE#2

1. ((d)	2. (c)	3.	• (a)	4.	(c)	5.	(d)	6.	(c)	7.	(c)	8.	(b)	9.	(b)	10). (b)	
																		20. (b) 30. (b)	

Topics: Rolle's theorem, LMVT, Increasing/Decreasing..& Maxima/Minima

Objective Questions Type I [Only one correct answer] _ In each of the questions below, four choices are given of which only one is correct. You have to select the correct answer which is the most appropriate. 1. Let f and g be non-increasing and non-decreasing (a) $(2n+1, 2n), n \in N$ (b) $\left(\frac{1}{2n+1}, 2n\right), n \in N$ functions respectively from $[0, \infty)$ to $[0, \infty)$ and h(x) = f(g(x)), h(0) = 0, then in $[0, \infty), h(x) - h(1)$ is (c) $\left(\frac{1}{2n+2}, \frac{1}{2n+1}\right), n \in N$ (d) none of these (a) < 0(b) > 0(c) = 0(d) increasing 8. The set of all values of a for which the function 2. If $ax^2 + \frac{b}{x} \ge c \forall x > 0$, where a > 0, b > 0, then $f(x) = \left(\frac{\sqrt{a+4}}{1-a} - 1\right) x^5 - 3x + \log 5$ (a) $27 ab^2 \ge 4c^3$ (b) $27 ab^3 \le 4c^3$ (d) $ab^3 \leq c^3$ (c) $ab^2 \ge c^3$ decreases for all real x is (a) $(-\infty, \infty)$ (b) $\left[-4, \frac{3-\sqrt{21}}{2}\right] \cup (1, \infty)$ (c) $\left(-3, 5-\frac{\sqrt{27}}{2}\right) \cup (2, \infty)$ (d) $[1, \infty)$ 3. In [0, 1], Langranges mean value theorem is NOT applicable to (a) $f(x) = \begin{cases} \frac{1}{2} - x, & x < \frac{1}{2} \\ \left(\frac{1}{2} - x\right)^2, & x \ge \frac{1}{2} \end{cases}$ 9. On which of the following intervals is the function $x^{100} + \sin x - 1$ decreasing? (b) $f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0\\ 1, & x = 0 \end{cases}$ (a) $(0, \pi/2)$ (b) (0,1) (c) $\left(\frac{\pi}{2},\pi\right)$ (d) None of these 10. The function $f(x) = \log_e (1 + x) - \frac{2x}{2 + x}$ is increasing on (c) f(x) = x |x|(d) f(x) = |x|4. If $f(x) = x^{\alpha} \ln x$ and f(0) = 0, then the value of α for which Rolle's theorem can be applied in [0, 1] is (a) (0,∞) (b) $(-\infty, 0)$ d > p (c) (c) (−∞,∞) 0.007883553 HT 110 (d) none of these (a) (b) -1(a) - 2(1 0) (d) (d) 1/2 11. The length of longest interval in which Rolle's theorem can (c) 0 5. The function $f(x) = \sin^4 x + \cos^4 x$ increases, if (a) be applied for the function (a) $0 < x < \frac{\pi}{8}$ (b) $\frac{\pi}{4} < x < \frac{3\pi}{8}$ (c) $\frac{3\pi}{8} < x < \frac{5\pi}{8}$ (d) (d) $\frac{5\pi}{8} < x < \frac{3\pi}{4}$ $f(x) = |x^2 - a^2|, (a > 0)$ is (b) $4a^2$ (a) 2a (c) $a\sqrt{2}$ (d) a 6. Let $y = x^2 e^{-x}$, then the interval in which y increases with respect to x is (a) $(-\infty, \infty)^{1}$ goi (d) (c) $(2, \infty) < \chi$ goi (b) (b) $(-2, 0)^{1 > 2}$ (c) (d) $(0, 2) < \infty$ mix (c) 7. The function $f(x) = \cos\left(\frac{\pi}{x}\right)$ is decreasing in the interval

	ALL AND A		an a
12.	The points of extremum of the function $F(x) = \int_{-\infty}^{x} e^{-t^2/2} (1 - t^2) dt$	23.	The function
	F(x) = $\int_{1}^{x} e^{-t^{2}/2} (1-t^{2}) dt$ are (a) ± 1 (b) 0 (c) $\pm 1/2$ (d) ± 2 A function f such that f(0) f(1) = 0		$f(x) = \int_{1}^{x} \{2(t-1)(t-2)^{3} + 3(t-1)^{2}(t-2)^{2}\} dt$
	(a) ± 1 (b) (c) ± 1 (c) \pm 1 (c) ± 1 (c) \pm 1 (c) ± 1 (c) ± 1 (c) \pm 1 (c) \pm 1 (c) \pm 1 (c) \pm 1 (c) ± 1 (c) \pm 1		attains its maximum at r is equal to
13.	(c) $\pm 1/2$ (d) ± 2 A function f such that $f'(2) = f''(2) = 0$ and f has a local maximum of -17 at 2 is		(a) 1 (b) 2 (c) 3 (c) 3
	iocul mannani or -17 at 2 is		
	(a) $(x-2)^4$ (b) $3-(x-2)^4$	24.	Assuming that the petrol burnt in a motor boat varies as
	(c) $-17 - (x - 2)^4$ (d) none of these		the cube of its velocity, the most economical speed, when going against a current of $c \text{ km/h}$ is
14.	The difference between the greatest and the least value of		(a) $(3c/2)$ km/h = (b) $(3c/4)$ km/h
			(c) $(5c/2)$ km/h (d) $(c/2)$ km/h
	$f(x) = \int_0^x (t^2 + t + 1) dt \text{ on } [2, 3] \text{ is}$	25.	N Characters of information are held on magnetic tape, in
	(a) 37/6 (b) 47/6		batches of x characters each, the batch processing time is $\alpha + \beta x^2$ seconds, α and β are constants. The optical value
	(c) 57/6 (d) 59/6		of x for fast processing is $\frac{1}{2}$
15.	Let $f(x) = a - (x - 3)^{8/9}$, then maxima of $f(x)$ is		(a) $\frac{\alpha}{\beta}$ (b) $\frac{\beta}{\alpha}$ (c)
	(a) 3 (b) $a - 3$ (c) a (d) none of these		
16.	(c) a (d) none of these Let $f(x)$ be a differential function for all x , if		(c) $\sqrt{\frac{\alpha}{\beta}}$ (d) $\sqrt{\frac{\beta}{\alpha}}$
	$f(1) = -2$ and $f'(x) \ge 2$ for all x in [1, 6], then minimum		A BOAD BUT DAGATOR ID THE IDEAL AND
	value of $f(6)$ is equal to		The minimum value of the function defined by
	(a) 2 (b) 4 (c) 6 (c)		$f(x) = \max[x, x + 1, 2 - x]$ is
17	(c) 6 (d) 8 The point in the interval $[0, 2\pi]$, where $f(x) = e^x \sin x$ has		(a) 0 (b) $\frac{1}{2}$
17.	maximum slope is $(x, 2x)$, where $f(x) = e^{-x} \sin x \ln x$		(c) 1 (d) $\frac{3}{2}$
•			
	(a) $\frac{\pi}{4}$ (b) $\frac{\pi}{2}$	27.	On [1, e], the least and greatest values of $f(x) = x^2 \ln x$ is
	(c) π (d) none of these		(a) $e, 1$ (b) $1, e$ (c) $0, e^2$ (d) none of these
10	Let $f(x) = \begin{cases} x^3 + x^2 + 3x + \sin x \left(3 + \sin \frac{1}{x}\right), & x \neq 0, \\ 0, & x = 0 \end{cases}$	28.	The minimum value of $\left(1 + \frac{1}{\sin^n \alpha}\right) \left(1 + \frac{1}{\cos^n \alpha}\right)$ is
10.	Let $f(x) = \begin{cases} x \\ 0 \end{cases}$		(a) 1 (b) 2
			(c) $(1 + 2^{n/2})^2$ (d) none of these
	then number of points (where $f(x)$ attains its minimum value) is	29	The fuel charges for running a train are proportional to the
	(a) 1 (b) 2		square of the speed generated in mile/h and costs Rs
	(c) 3 (d) infinite many		48 per h at 16 miles/h. The most economical speed if the fixed charges <i>ie</i> , salaries etc amount to Rs 300 per h
19.	If $f(x) = a \log_e x + bx^2 + x$ has extremum at		(a) 10 mile/h (b) 20 mile/h
	x = 1 and x = 3, then (a) $a = -3/4$, $b = -1/8$ (b) $a = 3/4$, $b = -1/8$		(c) 30 mile/h = (d) 40 mile/h
	(c) $a = -3/4$ $h = 1/8$ (d) none of these	30	. The maximum area of the rectangle that can be inscribed
20.	Let $f(x) = 1 + 2x^2 + 2^2 x^4 + \dots + 2^{10} x^{20}$. Then $f(x)$ has		in a circle of radius r is $(r) = r^2$
	(a) more than one minimum (b) exactly one minimum		(a) πr^2 (b) r^2 is present (s) πr^2
	(c) at least one maximum (d) none of the above		(c) $\frac{\pi r^2}{4}$ (b) ball of (d) $2r^2$ (equation (equation))
0.1	Let $f(x) = \begin{cases} \sin^{-1} \alpha + x^2, \ 0 < x < 1 \\ 2x, \qquad x \ge 1 \end{cases}$		and the last hard a lower of show a share a far
41.	Let $f(x) = \begin{cases} 2x, & x \ge 1 \end{cases}$		
	f(x) can have a minimum at $x = 1$ is the value of u is		
	(a) 1 (b) -1		
22	A differentiable function $f(r)$ has a relative minimum at		
42.	A differentiable function $y = f(x) + ax + b$ has a relative $x = 0$, then the function $y = f(x) + ax + b$ has a relative		
	minimum at $x = 0$ for		
	(a) all a and all b (b) all b if $a = 0$ (c) all $b > 0$ (d) all $a > 0$		
	(c) all $b > 0$ (d) all $a > 0$		
	Answers		L If is increasing, r-is decreasing then b(c)- ((c.(c)))
	11154613		decreasing
Dbj	jective Questions Type I [Only one correct answer]		2. An injective mapping must be either correlation of
	1. (c) 2. (a) 3. (a) 4. (d) 5. (b)	6. (d) 7. (d) 8. (b) 9. (d) 10. (a)
4			16. (d) 17. (b) 18. (a) 19. (a) 20.
4	11 (a) 12. (a) 13. (c) 14. (d) 15.	(c)	16. (d) 17. (b) 18. (a) 19. (a) 20.
	11. (a)12. (a)13. (c)14. (d)15.21. (d)22. (b)23. (a)24. (a)25.	(c) (c)	26. (d) 27. (c) 28. (c) 29. (d) 30.

Topics: Indefinite Integral & Definite Integral

Objective Questions Type I [Only one correct answer]

In each of the questions below, four choices are given of which only one is correct. You have to select the correct answer which is the most appropriate.

1. $\int \frac{(x^2 - 1)}{x^3 \sqrt{(2x^4 - 2x^2 + 1)}} dx$ is equal to (a) $\frac{\sqrt{(2x^4 - 2x^2 + 1)}}{x(x^2 - 1)} + c$ (b) $\frac{\sqrt{(2x^4 - 2x^2 + 1)}}{x^3} + c$ (c) $\frac{\sqrt{(2x^4 - 2x^2 + 1)}}{x^2} + c$ (d) $\frac{\sqrt{(2x^4 - 2x^2 + 1)}}{2x^2} + c$ 2. The integral $\int \frac{dx}{(\sqrt{x} + \sqrt[3]{x^2})}$ represents the function (a) $6\left\{\sqrt[3]{x^2} - \sqrt[3]{x} + \ln|1 + \sqrt[3]{x}|\right\} + c$ (b) $3\sqrt[3]{x} - 6\sqrt[6]{x} + 6\ln|1 + \sqrt[6]{x}| + c$ (c) $3\sqrt[3]{x} + 6\sqrt[6]{x} + 6\ln|1 + \sqrt[6]{x}| + c$ (d) $6\sqrt[3]{x^2} - 3\sqrt[3]{x} + 6\ln|1 + \sqrt[3]{x}| + c$ 3. Given $f(x) = \begin{vmatrix} 0 & x^2 - \sin x & \cos x - 2 \\ \sin x - x^2 & 0 & 1 - 2x \\ 2 - \cos x & 2x - 1 & 0 \end{vmatrix}$, then $\int f(x) dx$ is equal to (a) $\frac{x^3}{2} - x^2 \sin x + \sin 2x + c$ (b) $\frac{x^3}{3} - x^2 \sin x - \cos 2x + c$ (c) $\frac{x^3}{3} - x^2 \cos x - \cos 2x + c$ (d) none of the above 4. Let $x^2 + 1 \neq n\pi$, $n \in N$, then $\int x \sqrt{\left\{\frac{2\sin(x^2+1) - \sin\{2x^2+1\}}{2\sin(x^2+1) + \sin\{2x^2+1\}}\right\}} dx \text{ is}$ (a) $\ln \left| \frac{1}{2} \sec (x^2 + 1) \right| + c$ (b) $\ln \left| \sec \left\{ \frac{1}{2} (x^2 + 1) \right\} \right| + c$ (c) $\frac{1}{2}\ln|\sec(x^2+1)|+c$ (d) $\ln|\sec(x^2+1)|+c$

5. $\int |\ln x| dx$ equals (0 < x < 1) (a) $x + x |\ln x| + c$ (b) $x |\ln x| - x + c$ (c) $x + |\ln x| + c$ (d) $x - |\ln x| + c$ 6. $\int (x - {}^{11}C_1x^2 + {}^{11}C_2x^3 - {}^{11}C_3x^4 + \dots - {}^{11}C_{11}x^{12}) dx$ equals (a) $\frac{(1-x)^{12}}{12} - \frac{(1-x)^{11}}{11} + c$ (b) $\frac{(1-x)^{13}}{13} - \frac{(1-x)^{12}}{12} + c$ (c) $\frac{(1-x)^{11}}{11} - \frac{(1-x)^{12}}{12} + c$ (d) $\frac{(1-x)^{12}}{12} - \frac{(1-x)^{13}}{13} + c$ 7. $\int \sqrt{(x-3)} \{\sin^{-1} (\ln x) + \cos^{-1} (\ln x)\} dx$ equals (a) $\frac{\pi}{3}(x-3)^{3/2}+c$ **(b)** 0 (d) none of these (c) does not exist 8. $\int \frac{3+2\cos x}{(2+3\cos x)^2} dx$ is equal to (a) $\left(\frac{\sin x}{2+3\cos x}\right) + c$ (b) $\left(\frac{2\cos x}{2+3\sin x}\right) + c$ (c) $\left(\frac{2\cos x}{2+3\cos x}\right) + c$ (d) $\left(\frac{2\sin x}{2+3\sin x}\right) + c$ 9. $\int \sec^{4/9} \theta \csc^{14/9} \theta d\theta$ is equal to (a) $\frac{5}{9}(\tan\theta)^{-5/9} + c$ (b) $-\frac{9}{5}(\tan\theta)^{-5/9} + c$ (c) $\frac{9}{5}(\tan\theta)^{-9/5} + c$ (d) $-\frac{5}{9}(\tan\theta)^{-9/5} + c$ 10. If $\int \frac{(\sqrt{x})^5}{(\sqrt{x})^7 + x^6} dx = \lambda \ln \left(\frac{x^a}{x^a + 1}\right) + c$, then $a + \lambda$ is (a) = 2(b) > 2(d) = 1(c) < 2 11. $\int |x| \ln |x| dx$ equals $(x \neq 0)$ (a) $\frac{x^2}{2} \ln |x| - \frac{x^2}{4} + c$ (b) $\frac{1}{2} x |x| \ln x + \frac{1}{4} x |x| + c$

(c)
$$-\frac{x^2}{2}\ln|x| + \frac{x^2}{4} + c$$

(d) $\frac{1}{2}x|x|\ln|x| - \frac{1}{4}x|x| + c$

12. If a particle is moving with velocity $v(t) = \cos \pi t$ along a straight line such that at t = 0, s = 4 its position function is given by

that,

(a) $\frac{1}{\pi} \cos \pi t + 2$ (b) $-\frac{1}{\pi} \sin \pi t + 4$ (c) $\frac{1}{\pi} \sin \pi t + 4$ (d) none of these Let f(x) be a function such that f(0) = f'(0) = 0, $f''(x) = \sec^4 x + 4$, then the function is 13. Let (a) $\ln|(\sin x)| + \frac{1}{2}\tan^3 x + x$ $|| \frac{2}{3} \ln |(\sec x)| + \frac{1}{6} \tan^2 x + 2x^2 \sin x + 2x^2 \sin x + \frac{1}{6} \tan^2 x +$ (c) $\ln |\cos x| + \frac{1}{6} \cos^2 x + \frac{x^2}{5}$ (d) none of the above 14. $\int \frac{(2x^{12} + 5x^9)}{(x^5 + x^3 + 1)^3} dx$ is equal to (a) $\frac{x^2 + 2x}{(x^5 + x^3 + 1)^2} + c$ (b) $\frac{x^{10}}{2(x^5+x^3+1)^2}+c$ (c) $\ln |x^5 + x^3 + 1| + \sqrt{(2x^7 + 5x^4)} + c$ (d) none of the above 15. If $\int f(x) \cos x \, dx = \frac{1}{2} \{f(x)\}^2 + c$, then f(x) is (b) $\sin x + c$ (a) x + c(d) c (c) $\cos x + c$ 16. $\int (\sin 2x - \cos 2x) dx = \frac{1}{\sqrt{2}} \sin (2x - a) + b$ (a) $a = \frac{5\pi}{4}, b \in R$ (b) $a = -\frac{5\pi}{4}, b \in R$ (c) $a = \frac{\pi}{4}, b \in \mathbb{R}$ (d) none of these 17. The primitive function of the function $f(x) = \frac{\sqrt{a^2 - x^2}}{a^4}$ is

(a)
$$c + \frac{\sqrt{a^2 - x^2}}{3a^2x^3}$$
 (b) $c - \frac{(a^2 - x^2)^{3/2}}{2a^2x^2}$
(c) $c - \frac{(a^2 - x^2)^{3/2}}{3a^2x^3}$ (d) none of these

18. The antiderivative of $f(x) = \frac{1}{3 + 5 \sin x + 3 \cos x}$, whose graph passes through the point (0, 0) is

(a)
$$\frac{1}{5} \left(\ln \left| 1 - \frac{5}{3} \tan (x/2) \right| \right)$$

(b) $\frac{1}{5} \left(\ln \left| 1 + \frac{5}{3} \tan (x/2) \right| \right)$

(c)
$$\frac{1}{5} \left(\ln \left| 1 + \frac{5}{3} \cot (x/2) \right| \right)$$

(d) none of the above **19.** $\int x^{x}(1 + \ln |x|) dx$ is equal to (a) $x^{x} \ln |x| + c$ (b) $e^{x^{x}} + c$ (d) none of these (c) $x^{x} + c$ 20. If $\int \cos^4 x \, dx = A \, x + B \sin 2x + C \sin 4x + D$, then $\{A, B, C\}$ equals (a) $\left\{\frac{3}{8}, \frac{1}{32}, \frac{1}{4}\right\}$ (b) $\left\{\frac{3}{8}, \frac{1}{4}, \frac{1}{32}\right\}$ (c) $\left\{\frac{1}{32}, \frac{1}{4}, \frac{3}{8}\right\}$ (d) $\left\{\frac{1}{4}, \frac{3}{8}, \frac{1}{32}\right\}$ 21. $\int \frac{1}{x^2(x^4+1)^{3/4}} dx$ is equal to a supervise (a) $\left(1+\frac{1}{x^4}\right)^{1/4} + c$ (b) $(x^4+1)^{1/4} + c$ (c) $\left(1-\frac{1}{r^4}\right)^{1/4} + c$ (d) $-\left(1+\frac{1}{r^4}\right)^{1/4} + c$ 22. Let the equation of a curve passing through the point (0, 1) be given by $y = \int x^2 \cdot e^{x^3} dx$. If the equation of the curve is written in the form x = f(y), then f(y) is (a) $\sqrt{\ln \left| \frac{3y-2}{3} \right|}$ (b) $\sqrt[3]{\ln \left| \frac{2-3y}{3} \right|}$ (c) $\sqrt[3]{\ln \left| \frac{3y-2}{3} \right|}$ (d) none of these 23. $\int \frac{xe^{x}}{(1+x)^{2}} dx$ is equal to (a) $\frac{e^{x}}{x+1} + c$ (b) $e^{x} (x+1) + c$ (c) $-\frac{e^x}{(x+1)^2} + c$ (d) $\frac{e^x}{1+x^2} + c$ 24. If the derivative of f(x) w.r.t. x is $\frac{(1/2) - \sin^2 x}{f(x)}$, then f(x) is a periodic function with period (b) π (a) $\pi/2$ (a) h/2 (b) h/2(c) 2π (d) r25. $\int x^{-2/3} (1 + x^{1/2})^{-5/3} dx$ is equal to (d) not defined (a) $3(1+x^{-1/2})^{-1/3}+c$ (b) $3(1+x^{-1/2})^{-2/3}+c$ (c) $3(1 + x^{1/2})^{-2/3} + c$ (d) none of these 26. $\int \frac{\cos 4x - 1}{\cot x - \tan x} dx$ is equal to (a) $-\frac{1}{2}\cos 4x + c$ (b) $-\frac{1}{4}\cos 4x + c$ (c) $-\frac{1}{2}\sin 2x + c$ (d) none of these

27. If
$$f(x) = \lim_{n \to \infty} \frac{x^n - x^{-n}}{x^n + x^{-n}}, x > 1$$
, then

$$\int \frac{xf(x) \ln (x + \sqrt{(1 + x^2)})}{\sqrt{(1 + x^2)}} dx \text{ is}$$
(a) $\ln (x + \sqrt{(1 + x^2)}) - x + c$
(b) $\frac{1}{2} \{x^2 \ln (x + \sqrt{(1 + x^2)}) - x^2\} + c$
(c) $x \ln (x + \sqrt{(1 + x^2)}) - \ln (x + \sqrt{(1 + x^2)}) + c$
(d) none of the above
28. The value of the integral $\int \frac{dx}{x^n (1 + x^n)^{1/n}}, n \in N$ is
(a) $\frac{1}{(1 - n)} \left(1 + \frac{1}{x^n}\right)^{1 - \frac{1}{n}} + c$
(b) $\frac{1}{(1 + n)} \left(1 - \frac{1}{x^n}\right)^{1 - \frac{1}{n}} + c$
(c) $-\frac{1}{(1 - n)} \left(1 - \frac{1}{x^n}\right)^{1 - \frac{1}{n}} + c$
(d) $-\frac{1}{(1 - n)} \left(1 + \frac{1}{x^n}\right)^{1 - \frac{1}{n}} + c$
29. The value of the integral $\int \frac{\cos^3 x + \cos^5 x}{\sin^2 x + \sin^4 x} dx$ is
(a) $\sin x - 6 \tan^{-1}(\sin x) + c$

(b)
$$\sin x - 2(\sin x)^{-1} + c$$

(c) $\sin x - 2(\sin x)^{-1} - 6\tan^{-1}(\sin x) + c$
(d) $\sin x - 2(\sin x)^{-1} + 5\tan^{-1}(\sin x) + c$
30. If $\int f(x) \sin x \cos x \, dx = \frac{1}{2(b^2 - a^2)} \ln f(x) + c$, then $f(x)$ is equal to
(a) $\frac{1}{a^2 \sin^2 x + b^2 \cos^2 x}$ (b) $\frac{1}{a^2 \sin^2 x - b^2 \cos^2 x}$
(c) $\frac{1}{a^2 \cos^2 x + b^2 \sin^2 x}$ (d) none of these

31. If l^r means $\ln \ln \ln \dots x$, the \ln being repeated r times, then $\int \{x \, l(x) \, l^2(x) \, l^3(x) \dots l^r(x)\}^{-1} dx$ is equal to

(a)
$$l^{r+1}(x) + c$$
 (b) $\frac{l^{r+1}(x)}{r+1} + c$

(c) $l^r(x) + c$ (d) none of these

32. The value of $\int_0^{2\pi} \frac{dx}{e^{\sin x} + 1}$ is (a) π (b) 0 (c) 2π (d) $\pi/2$ 33. $\int_{0}^{\pi/4} \sin x \, d \, (x - [x])$ is equal to (where [·] denotes the (a) π greatest integer function) (b) $1 - \frac{1}{\sqrt{2}}$ (a) 1/2 (c) 1 (d) none of these 34. The value of the integral $I = \int_{1}^{\infty} \frac{(x^2 - 2)}{x^3 \sqrt{(x^2 - 1)}} dx$ is (a) 0 (b) 2/3 (d) none of these (c) 4/3 35. If $I_1 = \int_0^{3\pi} f(\cos^2 x) \, dx$ and $I_2 = \int_0^{\pi} f(\cos^2 x) \, dx$, then (b) $I_1 = 2I_2$ (d) none of these (a) $I_1 = I_2$ (c) $I_1 = 5I_2$ 36. If $I = \int_{0}^{50\pi} \sqrt{(1 - \cos 2x)} dx$, then the value of I is (b) 100√2 (a) 50√2 (c) $25\sqrt{2}$ (d) none of these **37.** Let f(x) be an odd function in the interval $\left|-\frac{T}{2}, \frac{T}{2}\right|$, with a period T. Then $F(x) = \int_{a}^{x} f(t) dt$ is (a) periodic with period T(b) non periodic (c) periodic with period 2T(d) periodic with period aT38. If $\int_0^{10} f(x) dx = 5$, then $\sum_{k=1}^{10} \int_0^1 f(k-1+x) dx$ is (a) 50 (d) none of these (c) 5 39. The value of the integral $\iint_{0}^{2\pi} [2 \sin x] dx$ is ([·] denotes the greatest integer function) (b) 2π (a) π (d) 4π (c) 3π 40. Let $f(x) = \min \left(|x|, 1-|x|, \frac{1}{4} \right), \forall x \in \mathbb{R}$, then the value of $\int_{-1}^{1} f(x) dx$ is equal to (a) $\frac{1}{32}$ (b) $\frac{3}{8}$ (c) $\frac{3}{32}$ (d) none of these (c) $\frac{3}{32}$ 41. If $\int_{1/2}^{2} \frac{1}{x} \operatorname{cosec}^{101}\left(x - \frac{1}{x}\right) dx = k$, then the value of k is (b) 1/2 😡 (a) 1 (d) 1/101 42. If $\int_{0}^{\infty} e^{-x^{2}} dx = \frac{\sqrt{\pi}}{2}$ and $\int_{0}^{\infty} e^{-ax^{2}} dx$, a > 0 is

(b) $\frac{\sqrt{\pi}}{2a}$ (a) $\frac{\sqrt{\pi}}{2}$ (d) $\frac{1}{2}\sqrt{\frac{\pi}{a}}$ (c) $2\frac{\sqrt{\pi}}{2}$ 43. If $\int_0^1 e^{x^2} (x - \alpha) dx = 0$, then (b) $\alpha < 0$ (a) $1 < \alpha < 2$ (d) $\alpha = 0$ (c) $0 < \alpha < 1$ (d) 44. If [x] denotes the greatest integer less than or equal to x, then $\int_0^\infty \left| \frac{2}{e^x} \right| dx$ is equal to (c) 0 (b) e^2 (c) e^2 45. If $\int_0^x f(t) dt = x + \int_x^1 t f(t) dt$, then the value of f(1) is **(b)** 0 (a) 1/2 (c) 1 (d) -1/246. The value of $\int_{\pi/4}^{3\pi/4} \frac{x}{1+\sin x} dx$ is equal to (a) $(\sqrt{2} - 1) \pi$ (b) $(\sqrt{2} + 1) \pi$ (c) π (d) none of these 47. Let *f* be a positive function. If $I_1 = \int_{1-k}^k x f\{x (1-x)\} dx,$ $I_2 = \int_{1-k}^{k} f\{x (1-x)\} dx$ where 2k - 1 > 0, then $I_1 : I_2$ is equal to (a) 2:1 (b) k:1(c) 1:2 (d) 1:1 48. Let $f(x) = \frac{1}{2}a_0 + \sum_{i=1}^n a_i \cos(ix) + \sum_{j=1}^n b_j \sin(jx)$, then $\int_{-\pi}^{\pi} f(x) \cos kx \, dx \text{ is equal to}$ (a) a_k (c) πa_k (d) 49. The value of the definite integral $\int_0^1 \frac{x \, dx}{(x^3 + 16)}$ lies in the interval [a, b]. Then smallest such interval is (a) $\begin{bmatrix} 0, \frac{1}{17} \end{bmatrix}$ (b) $\begin{bmatrix} 0, 1 \end{bmatrix}$ (c) $\begin{bmatrix} 0, \frac{1}{27} \end{bmatrix}$ (d) none of these (the value of the integral [50. Value of $\int_{2}^{3} \frac{dx}{\sqrt{(1+x^{3})}}$ is (a) less than 1 (b) greater than 2 (d) none of these (c) lies between 3 and 4 51. Suppose for every integer n, $\int_{n}^{n+1} f(x) dx = n^{2}$, the value H The value of Id of $\int_{-1}^{4} f(x) dx$ is (a) 16 (bits a (d)) (b) 14 (c) 19 (b) (b) (d) none of these ()

52. The value of $\int_{0}^{\sin^{2} x} \sin^{-1} \sqrt{t} dt + \int_{0}^{\cos^{2} x} \cos^{-1} \sqrt{t} dt$ is (a) $\pi/2$ (b) 1 (d) none of these (c) $\pi/4$ 53. If $I = \int_0^1 \cos\left(2 \cot^{-1} \sqrt{\left(\frac{1-x}{1+x}\right)}\right) dx$, then (a) $I > \frac{1}{2}$ (b) $I = -\frac{1}{2}$ (c) $0 < I < \frac{1}{2}$ (d) none of these 54. The value of $\int_{0}^{2} [x^2 - 1] dx$, where [x] denotes the greatest integer function, is given by (a) $3 - \sqrt{3} - \sqrt{2}$ (d) 2 (d) none of these (c) 1 55. Let $\int_0^x \left(\frac{bt\cos 4t - a\sin 4t}{t^2}\right) dt = \frac{a\sin 4x}{x}$, then a and b are given by (b) a = 2, b = 2(d) a = 2, b = 4(a) a = 1/4, b = 1(c) a = -1, b = 456. If $f(x) = \cos x - \int_0^x (x-t) f(t) dt$, then f''(x) + f(x)equals (a) $-\cos x$ (b) 0 (d) $-\int_{0}^{-x} (x-t) f(t) dt$ (c) $\int_{-\infty}^{\infty} (x-t) f(t) dt$ 57. Let $f(x) = \max \{x + |x|, x - [x]\}$, where [x] denotes the greatest integer $\leq x$. Then $\int_{-2}^{2} f(x) dx$ is equal to (b) 2 (a) 3 (d) none of these (c) 1 58. The value of $\int_{-2}^{2} \frac{\sin^2 x}{[x/\pi] + [1/2]} dx$, where [x] denotes the greatest integer $\leq x$, is (b) 0 (a) 1 (d) none of these (c) $4 - \sin 4$ 59. The value of $\int_{-1}^{1} \max\{2 - x, 2, 1 + x\} dx$ is (b) 9/2 (a) 4 (d) none of these (c) 2 60. Let f(x) be a function satisfying f'(x) = f(x) with f(0) = 1 and g be the function satisfying $f(x) + g(x) = x^2$ the value of the integral $\int_0^1 f(x) g(x) dx$ is (b) $\frac{1}{4}(e-2)$ (a) $\frac{1}{4}(e-7)$ (d) none of these (c) $\frac{1}{2}(e-3)$ 61. The value of $\int_0^{\pi} \left(\sum_{r=0}^3 a_r \cos^{3-r} x \sin^r x \right) dx$ depends on (b) a_1 and a_2 $d \in b$ (a) a_0 and a_2 (c) a_0 and a_3 (b) (d) a_1 and a_3

62. Let $f: R \to R$ such that f(x+2y) = f(x) + f(2y) + 4xyf'(0) = 0. If $I_1 = \int_0^1 f(x) dx$, $\forall x, y \in R$ and $I_2 = \int_{-1}^{0} f(x) dx$ and $I_3 = \int_{1/2}^{2} f(x) dx$, then (a) $I_1 = I_2 > I_3$ (b) $I_1 > I_2 > I_3$ (d) $I_1 < I_2 < I_3$ (c) $I_1 = I_2 < I_3$ 63. If $\int_{a}^{b} \frac{x^{n}}{x^{n} + (16 - x)^{n}} dx = 6$, then (b) $a = 2, b = 14, n \in \mathbb{R}$ (a) $a = 4, b = 12, n \in \mathbb{R}$ (c) $a = -4, b = 20, n \in R$ (d) $a = 2, b = 8, n \in R$ 64. If f(x) and g(x) are continuous functions, then $\int_{\ln \lambda}^{\ln (1/\lambda)} \frac{f\left(\frac{x^2}{4}\right) (f(x) - f(-x))}{g\left(\frac{x^2}{4}\right) (g(x) + g(-x))} dx \text{ is}$ (b) a non-zero constant (a) depend on λ (d) none of these (c) zero 65. The value of $\int_0^{\pi/2} \frac{1+2\cos x}{(2+\cos x)^2} dx$ is (b) 2 (a) $-\frac{1}{2}$ (c) $\frac{1}{2}$ (d) none of these 66. The value of $\int_{0}^{2\pi} \frac{x \sin^{2n} x}{\sin^{2n} x + \cos^{2n} x} dx$ is (b) $\frac{\pi^2}{2}$ (a) $\frac{\pi^2}{4}$ (d) $2\pi^2$ (c) π^2 67. Consider the integrals $I_1 = \int_0^1 e^{-x} \cos^2 x \, dx, I_2 = \int_0^1 e^{-x^2} \cos^2 x \, dx,$ $I_3 = \int_0^1 e^{-x^2} dx$ and $I_4 = \int_0^1 e^{-x^2/2} dx$ is to only let I be the greatest integral among I_1, I_2, I_3, I_4 , then (b) $I = I_2$ (a) $I = I_1$ (d) $I = I_4$ (c) $I = I_3$ 68. If $f(x) = \int_{2}^{x^2} \frac{(\sin^{-1}\sqrt{t})^2}{\sqrt{t}} dt$, then the value of $(1-x^2) \{f''(x)\}^2 - 2f'(x) \text{ at } x = \frac{1}{\sqrt{2}} \text{ is } \begin{bmatrix} 1 & \text{spley} \end{bmatrix}$ (a) $2 - \pi$ (c) $4 - \pi$ (b) $3 + \pi$ (d) none of these 69. If for $x \neq 0$, $af(x) + bf\left(\frac{1}{x}\right) = \frac{1}{x} - 5$, where $a \neq b$, then $\int_{1}^{2} xf(x) dx$ is equal to (a) $\frac{b-9a}{9(a^2-b^2)}$ (b) $\frac{b-9a}{b(a^2-b^2)}$ (c) (c) $\frac{b-9a}{6(a^2-b^2)}$ (d) none of these

PAGE#9

.70. Let f and g be two continuous functions. Then $\int_{-\pi/2}^{\pi/2} \{f(x) + f(-x)\} \{g(x) - g(-x)\} dx \text{ is equal to}$ (a) π (b) 1 (c) -1 (d) 0 1 (5) 71. Let f(x) be a continuous function such that f(a - x) + f(x) = 0 for all $x \in [0, a]$, then $\int_0^a \frac{dx}{1+e^{f(x)}}$ is equal to (b) $\frac{a}{2}$ to solve (a) a (d) $\frac{1}{2}f(a)$ (c) f(a)72. The equation $\int_{-\pi/4}^{\pi/4} \left(a |\sin x| + \frac{b \sin x}{1 + \cos x} + c \right) dx = 0,$ where a, b, c are constants, gives a relation between (a) a, b and c(b) a and c(c) a and b(d) b and c73. The value of $\int_{0}^{16\pi/3} |\sin x| dx$ is (a) 17/2 (b) 19/2 (c) 21/2 (d) none of these 74. The value of $\int_{0}^{1000} e^{x - [x]} dx$, is ([·] denotes the greatest integer function) (b) 1000 (e − 1) (a) 1000e(d) none of these (c) 1001 (*e* − 1) 75. If f'''(x) = k in [0, a], then $\int_{0}^{a} f(x) \, dx - \left\{ x \, f(x) - \frac{x^{2}}{2!} \, f'(x) + \frac{x^{3}}{3!} \, f''(x) \right\}_{0}^{a} \text{ is }$ (b) ka⁴/24 (a) $-ka^4/12$ (d) none of these (c) $-ka^4/24$ 76. The value of $\int_{0}^{n^{2}} [\sqrt{x}] dx$, ([.] denotes the greatest integer function), $n \in N$, is (a) $\left\{\frac{n(n+1)}{2}\right\}^2$ (b) $\frac{1}{6}n(n-1)(4n+1)$ (d) $\frac{n(n+1)(n+2)}{6}$ (c) Σn^2 77. $\lim_{n \to \infty} \frac{(n!)^{1/n}}{n}$ equals (b) e^{-1} (a) e (d) none of these (c) 1 78. If [.] stands for the greatest integer function, the value of $\int_{4}^{10} \frac{[x^2] dx}{[x^2 - 28x + 196] + [x^2]}$ is (b) and (b) 1 (a) 0 (d) none of these (c) 3

79. $\int_{\cos \cos^{-1} \alpha}^{\sin \sin^{-1} \beta} \frac{\cos(\cos^{-1} x)}{\sin(\sin^{-1} x)} dx$ is equal to
(a) 1 (b) 0
(c) $\beta - \alpha$ (d) none of these
80. If $na = 1$ always and $n \to \infty$, then the value of
2
(a) 1 (c) $e^{\pi^2/24}$ (d) $e^{-\pi^2/12}$
(a) 1 (b) $e^{\pi^{-7/8}}$ (c) $e^{\pi^{2}/24}$ (d) $e^{-\pi^{2}/12}$ 81. The value of $\int_{0}^{100} [\tan^{-1} x] dx$ is (where [.] denotes the greatest integer function]
(where [] denotes the greatest and g
(c) $100 - \tan 1$ (d) none of these
82. If $f(x)$ satisfies the requirements of Rolle's theorem in
[1, 2] and $f'(x)$ is continuous in [1, 2], then $\int_1^2 f'(x) dx$ is
equal to (a) 0 (b) 1 (c) 3 (d) -1
83. The value of $\int_{-2}^{2} \min(x - [x], -x - [-x]) dx$ is ([.]
denotes the greatest integer function)
(a) 0 (b) 1
(c) 2 (d) none of these
84. The value of $\int_0^2 [x^2 - x + 1] dx$, (where [·] denotes the
greatest integer function) is given by
(a) $\frac{5-\sqrt{5}}{2}$ (b) $\frac{6-\sqrt{5}}{2}$
(c) $\frac{7-\sqrt{5}}{2}$ (d) $\frac{8-\sqrt{5}}{2}$
$(1^k+2^k+\dots+k)$
85. The value of $\lim_{n \to \infty} \left(\frac{1^k + 2^k + \ldots + n^k}{n^{k+1}} \right)$ is
(a) $\frac{1}{k+2}$ (b) $\frac{1}{k+1}$
k+2 and subset for all stocks $(k+1)$ and
(c) $\frac{2}{k+2}$ (d) 0
k+3
86. The value of the integral $\int_{1/e}^{e} \ln x dx$ is
(a) $1-1/e$ (b) $2(1-1/e)$ (c) $e^{-1}-1$ (d) none of these
87. $f(x)$ is continuous periodic function with period T, then
the integral $I = \int_{a}^{a+T} f(x) dx$ is
 (a) equal to 2a (b) equal to 3a (c) independent of a (d) none of these
1^{2n} (r)
f 88. $\lim_{n \to \infty} \frac{1}{n} \sum_{r=n+1}^{2n} \ln\left(1 + \frac{r}{n}\right)$ equals
(a) $\ln\left(\frac{27}{4e}\right)$ (b) $\ln\left(\frac{27}{e^2}\right)$ (c)
(a) $\ln\left(\frac{27}{4e}\right)$ (c) $\ln\left(\frac{4}{e}\right)$ (d) none of these

89. Given that n is odd and m is even integer. The value of $\int_{0}^{\pi} \cos mx \sin nx \, dx$ is (a) $\frac{2m}{n^2 - m^2}$ (b) $\frac{2n}{n^2 - m^2}$ (c) $\frac{m^2 + n^2}{n^2 - m^2}$ (d) none of these 90. $\int_{a/4}^{3a/4} \frac{\sqrt{x}}{\sqrt{(a-x)} + \sqrt{x}} dx$ is equal to (a) $\frac{a}{2}$ (b) a (c) -a (d) none of these 91. The value of $\int_0^2 \left| \cos\left(\frac{\pi x}{2}\right) \right| dx$ is (a) 2π (c) 3/4π (b) $\pi/2$ (d) $4/\pi$ 92. If $f'(x) = f(x) + \int_0^1 f(x) dx$ and given f(0) = 1, then f(x)is equal to (a) $\frac{e^x}{2-e} + \left(\frac{1+e}{1-e}\right)$ (b) $\frac{2e^x}{3-e} + \left(\frac{1-e}{3-e}\right)$ (c) $\frac{e^x}{2-e^x}$ (d) $\frac{2e^x}{3-e^x}$ 93. The value of the integral $\int_0^1 \frac{x^{\alpha} - 1}{\ln x} dx$, is (b) $2 \ln (\alpha + 1)$ (a) $\ln \alpha$ (d) none of these (c) $3 \ln \alpha$ 94. The value of $\int_{\pi}^{2\pi} [2 \sin x] dx$, (where [·] represents the greatest integer function) is (a) $-\frac{5\pi}{5}$ (b) $-\pi$ (c) $\frac{5\pi}{3}$ (d) -2π

95. $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k^{1/a} \left\{ n^{a-\frac{1}{a}} + k^{a-\frac{1}{a}} \right\}}{n^{a+1}}$ is equal to (b) 2 (a) 1 (c) 3 (d) none of these 96. Let $f(x) = \min(\{x\}, \{-x\}) \forall x \in R$, where $\{x\}$ denotes the fractional part of x, then $\int_{-100}^{100} f(x) dx$ is equal to (a) 50 (b) 100 (d) none of these (c) 200 97. The value of $\int_{-\pi/2}^{199 \pi/2} \sqrt{(1 + \cos 2x)} dx$ is (a) 50√2 (b) $100\sqrt{2}$ (d) $200\sqrt{2}$ (c) $150\sqrt{2}$ **98.** The value of $\int_0^{\pi/4} (\tan^n x + \tan^{n-2} x) d(x - [x]),$ (where [·] denotes the greatest integer function) is (a) $\frac{1}{n-1}$ (b) $\frac{1}{n+1}$ (c) $\frac{2}{n-1}$ (d) none of these **99.** If $\int_{-1}^{4} f(x) dx = 4$ and $\int_{2}^{4} (3 - f(x)) dx = 7$, the value of $\int_{2}^{-1} f(x) dx$ is (b) -3 (a) 2 (c) -5 (d) none of these 100. If $I_1 = \int_0^x e^{zx} e^{-z^2} dz$ and $I_2 = \int_0^x e^{-z^2/4} dz$, then (b) $I_1 = e^{x^2} I_2$ (a) $I_1 = e^x I_2$ (c) $I_1 = e^{x^2/2}I_2$ (d) none of these 101. If z = x + 3i, then the value of $\int_{2}^{4} \arg \left| \frac{z - i}{z + i} \right| dx$, (where [·] denotes the greatest integer function and $i = \sqrt{-1}$, is (a) 3√2 (b) 6√3 (c) $\sqrt{6}$ (d) none of these

Answers.

1.	(d)	2.	(b)	3.	(d)	4.	(b)	5.	(a)	6.	(b)	7.	(c)	8.	(a)	9.	(b)	10.	(b)
1.	(d)	12.	(c)	13.	(b)	14.	(b)	15.	(b)	16.	(b)	17.	(c)	18.	(b)	19.	(c)	20.	(b)
21.	(d)	22.	(d)	23.	(a)	24.	(b)	25.	(b)	26.	(d)	27.	(d)	28.	(a)	29.	(c)	30.	(a)
1.	(a)	32.	(a)	33.	(b)	34.	(a)	35.	(d)	36.	(b)	37.	(a)	38.	(c)	39.	(a)	40.	(b)
1.	(c)	42.	(d)	43.	(c)	44.	(a)	45.	(a)	46.	(a)	47.	(c)	48.	(c)	49.	(a)	50.	(a)
1.	(c)	52.	(c)	53.	(b)	54.	(a)	55.	(a)	56.	(a)	57.	(d)	58.	(b)	59.	(b)	60.	(d)
1.	(d)	62 .	(c)	63.	(b)	64.	(c)	65.	(c)	66.	(c)	67.	(d)	68.	(d)	69.	(d)	70.	(d)
1.	(b)	72.	(b)	73.	(c)	74.	(b)	75.	(c)	76.	(b)	77.	(b)	78.	(c)	79.	(c)	80.	(c)
1.	(c)	82.	(a)	83.	(b)	84.	(a)	85.	(b)	86.	(b)	87.	(c)	88.	(a)	89.	(b)	90.	(d)
1.	(d)	92.	(b)	93.	(d)	94.	(a)	95.	(a)	96.	(a)	97.	(d)	98.	(a)	99.	(c)	100.	(d)

Topic: Area Under Curve

• Objective Questions Type I [Only one correct answer] .

In each of the questions below, four choices are given of which only one is correct. You have to select the correct answer which is the most appropriate.

- The area bounded by the curve f(x) = x + sin x and its inverse between the ordinates x = 0 to x = 2π is

 (a) 4 sq unit
 (b) 8 sq unit
 - (c) 4π sq unit (d) 8π sq unit
- 2. The area bounded by $y = \frac{\sin x}{x}$, x-axis and the ordinates
 - x = 0, x = $\frac{\pi}{4}$ is (a) = $\frac{\pi}{4}$ (b) < $\frac{\pi}{4}$ (c) > $\frac{\pi}{4}$ (d) < $\int_{0}^{\pi/4} \frac{\tan x}{x} dx$
- 3. Area of the region bounded by $[x]^2 = [y]^2$, if $x \in [1, 5]$, where [.] denotes the greatest integer function, is
 - (a) 4 sq unit(b) 8 sq unit(c) 5 sq unit(d) 10 sq unit
- 4. If A_n is the area bounded by $y = (1 x^2)^n$ and coordinate
 - axes, $n \in N$, then (a) $A_n = A_{n-1}$ (b) $A_n < A_{n-1}$ (c) $A_n > A_{n-1}$ (d) $A_n = 2A_{n-1}$
- 5. The area bounded by min (|x|, |y|) = 2 and max (|x|, |y|) = 4 is
 (a) 8 sq unit
 (b) 16 sq unit
 (c) 24 sq unit
 (d) 32 sq unit
- (c) 24 sq unit (d) 32 sq unit 6. Let $f(x) = 2\sqrt{x}$ and $g(x) = 2\sqrt{(1-x)}$ be two functions and let $f_1(x) = \max \{f(t), 0 \le t \le x, 0 \le x \le 1\}$ and $g_1(x) = \min \{g(t), 0 \le t \le x, 0 \le x \le 1\}$. Then the area bounded by $f_1(x) \le 0, g_1(x) \le 0$ and x-axis is

(a)
$$\frac{1}{3\sqrt{2}}$$
 sq unit
(b) $\frac{2}{3\sqrt{2}}$ sq unit
(c) $\frac{1}{\sqrt{2}}$ sq unit
(d) $\frac{4}{3\sqrt{2}}$ sq unit

7. Area bounded by the curve y = √(sin [x] + [sin x]), where
 [.] denotes the greatest integer function, lines x = 1 and x = π/2 and the x-axis is

(a)
$$\left(\frac{\pi}{2} - 1\right)$$
 sq unit
(b) $\sqrt{\sin 1} \left(\frac{\pi}{2} - 1\right)$ sq unit
(c) $\sqrt{\cos 1} \left(\frac{\pi}{2} - 1\right)$ sq unit
(d) $\sqrt{\frac{\pi}{2}} \left(\frac{\pi}{2} - 1\right)$ sq unit

8. The area bounded by the curves $y = \sin^{-1}|\sin x|$ and $y = (\sin^{-1}|\sin x|)^2$, $0 \le x \le 2\pi$ is

- (a) $\left(\frac{\pi^3}{3} + \frac{4}{3}\right)$ sq unit (b) $\left(\frac{\pi^3}{6} - \frac{\pi^2}{2} + \frac{4}{3}\right)$ sq unit (c) $\left(\frac{\pi^2}{2} - \frac{4}{3}\right)$ sq unit (d) $\left(\frac{\pi^2}{6} - \frac{\pi}{4} + \frac{4}{3}\right)$ sq unit
- 9. Area enclosed by the curve |x + y - 1| + |2x + y - 1| = 1 is (a) 2 sq unit (b) 3 sq unit

Shur na 1 (h

- (c) 6 sq unit (d) 7 sq unit
- 10. Area of the region bounded by the curves $y|y| \pm x|x| = 1$ and y = |x| is
 - (a) $\frac{\pi}{8}$ sq unit (b) $\frac{\pi}{4}$ sq unit (c) $\frac{\pi}{2}$ sq unit (d) π sq unit
- 11. The area between the curve $y = 2x^4 x^2$, the x-axis and the ordinates of two minima of the curve is

(a)
$$\frac{7}{120}$$
 sq unit
(b) $\frac{9}{120}$ sq unit
(c) $\frac{11}{120}$ sq unit
(d) $\frac{13}{120}$ sq unit

12. The area bounded by the x-axis, the curve y = f(x) and the lines x = 1 and x = b is equal to $(\sqrt{b^2 + 1} - \sqrt{2})$ for all

$$b \ge 1, \text{ then } f(x) \text{ is odd order of the local basis of the loca$$

13. Tl	ne area of the region bo	bunded by $1 - y^2 = x $ and		(a) 4:5	(b) 5:8
x	+ y = 1 is			(c) 2:3	(d) 3:2
	i) 1/3 sq unit	(b) 2/3 sq unit	23.	The area bounded by $y = 1$	$x e^{ x }$ and lines $ x = 1, y = 0$ is
(0	c) 4/3 sq unit	(d) 1 sq unit		(a) 4 sq unit	(b) 6 sq unit
4. A	rea bounded by the curve y	x = (x - 1)(x - 2)(x - 3) and		(c) 1 sq unit	(d) 2 sq unit
		inates $x = 0$ and $x = 3$ is equal	24	The area of the	
to	12		41.	$f(x) = \sin x, g(x) = \cos x$	
	. 9	a 11		(a) $2(\sqrt{2} - 1)$ sq unit	(b) $(\sqrt{3} + 1)$ sq unit
(2	a) $\frac{7}{4}$ sq unit	(b) $\frac{11}{4}$ sq unit		(a) $2(\sqrt{2} - 1)$ sq unit (c) $2(\sqrt{3} - 1)$ sq unit	(d) none of these
Comers,	13	15			5 (S)
((c) $\frac{13}{4}$ sq unit	(d) $\frac{15}{4}$ sq unit	25.	The area of the figure bo	unded by two branches of the
1		1435 T 14		curve $(y - x)^2 = x^3$ and the	the straight line $x = 1$ is $x = 1$
		ded by the curves $y = x - 1 $		(a) $\frac{1}{2}$ sq unit	(b) $\frac{4}{5}$ sq unit
	$\operatorname{nd} y = 3 - x \text{ is }$	 [1] A. M. M.		$\binom{a}{3} = sq unit$	$\frac{(b)}{5}$
	a) · 2 sq unit	(b) 3 sq unit		(c) $\frac{5}{4}$ sq unit	(d) 3 sq unit
(c) 4 sq unit	(d) 1 sq unit		4	(d) 5 sq unit
16. A	rea bounded by the curve y	$y = x \sin x$ and x-axis between	26	If the area bounded by the	e x-axis, the curve $y = f(x)$ and
	$x = 0$ and $x = 2\pi$ is	Lianstra 2	20.		
da la C	a) 2π sq unit	(b) 3π sq unit 3π sq unit	d d d a	the second se	independent of $d, \forall d > c$ (c is a
	c) 4π sq unit	(d) 5π sq unit		constant), then f is	MARY GROUP WILLING
				(a) the identity function	and the second sec
		-x), then area bounded by	1 212	(b) the zero function	J The West experience of the
	(x) and x-axis is	F		(c) a non-zero constant fu	inction
(a) $\frac{1}{6}$ sq unit	(b) $\frac{5}{6}$ sq unit		(d) none of the above	(A) 4 5. (BBE
5. 2	6 1		27.	The area bounded by the c	surves $y = x - 1$ and $y = - x + 1$
((c) $\frac{7}{2}$ sq unit	(d) $\frac{11}{6}$ sq unit	22121	is	2. The area owned by a
MIE	6 6 C C C C C C C C C C C C C C C C C C	0		(a) 1 sq unit	(b) 2 sq unit
18. 7	The area bounded by the s	graph $y = [x - 3] $, the x-axis		(c) $2\sqrt{2}$ sq unit	(d) $4\sqrt{2}$ sq unit
		= 3 is ([.] denotes the greatest			
	integer function)	alma pala - (a)	28.	The area bounded by $y = 3$	$x^2, y = [x + 1], 0 \le x < 1$ and the
		(b) 15 sq unit		y-axis is ([.] denotes the g	reatest integer function)
	(a) 7 sq unit			(a) 1/3 sq unit	(b) 2/3 sq unit
	(c) 21 sq unit	(d) 28 sq unit		(c) 1 sq unit	(d) $7/3$ sq unit
19. 1	The value of c for which the	area of the figure bounded by	29		s function such that the area
		straight lines $x = 1$ and $x = c$			= $f(x)$, the x-axis and the two
-	and the x-axis is equal to $\frac{16}{3}$	is sense of the sense of the			
- C	and the x-axis is equal to 3	(a) 2 sq (m)		ordinates $x = 0$ and $x = 0$	a is $\left(\frac{a^2}{2} + \frac{a}{2}\sin a + \frac{\pi}{2}\cos a\right)$ sq
((a) 2 1100 pe 1 (b)	(b) $\sqrt{8 - \sqrt{17}}$ (a) (b)		more buy libra the second	
	A low los more and real had	(d) 1		unit then $f\left(\frac{\pi}{n}\right)$ is	and the second
- In	() 3	$es y = \left[\frac{x^2}{64} + 2\right], y = x - 1 \text{ and}$		unit, then $f\left(\frac{\pi}{2}\right)$ is	axes, h e iv cher
20 /	Area bounded by the curve	es $y = \frac{x^2}{x^2} + 2$, $y = x - 1$ and			_2 _
20. 1	ited bounded by the	64 64		(a) $\frac{1}{2}$	(b) $\frac{\pi}{1} + \frac{\pi}{1}$
•	r = 0 above r-axis is ([.]	denotes the greatest integer			5. The area be pen 8 by minut
	function)	(c) - sq unit		(c) $\frac{\pi+1}{2}$ (c) $\frac{\pi+1}{2}$	(d) none of these
	(a) 2 sq unit	(b) 3 sq unit		2 hand by \$1 (d) 1	
	(c) 4 sq unit	(d) none of these	30	The area bounded by the	curve $y = x^4 - 2x^3 + x^2 + 3$, the
			-bris		
21. 7	The slope of the tangent to a	a curve $y = f(x)$ at $(x, f(x))$ is			ordinates corresponding to the
2	2x + 1. If the curve passes th	rough the point (1, 2), then the		points of minimum of the	runction $y(x)$ is
		by the curve, the x-axis and the	8916	(a) $\frac{10}{3}$ sq unit	(b) $\frac{27}{2}$ sq unit
	ine $x = 1$ is	(c) (c) (c)			
((a) $\frac{5}{2}$ sq unit	(b) $\frac{o}{d}$ sq unit		(a) ²¹ co unit	(d) none of these (h)
and the	x axis, the during 1 6, a	(b) $\frac{0}{5}$ sq unit		$\frac{10}{10}$ sq unit	
		(d) 6 sq unit	21	The area bounded by the	curves the control (3)
	6		51.	$y = \ln x, y = \ln x , y = 1 $	
22. 1	The area of the region	n bounded by the curve	31.51		
	$a^4 y^2 = (2a - x) x^5$ is to that	of the circle whose radius is a,	a matal	(a) 5 sq unit	
	s given by the ratio			(c) 4 sq unit	(d) none of these
×. 1	of the range	(1 + ² x) + (3)			elistan e sell'hous il in to
	Answers	×			
	Answers				equited area = 4.4
Obie	ctive Questions Type I [O	nly one correct answer]			
)	6. (d) 7. (b)	8. (b) 9. (a) 10.
1					18. (b) 19. (d) 20.
11					28. (b) 29. (a) 30.
21	. (a) 22. (b) 23 .	(d) 24. (a) 25. (b)	, ,		(a) 30 .

31.

(c)

PAGE#13

Topic: Differential Equation

Objective Questions Type I [Only one correct	answer]
In each of the questions below, four choices are given of which o most appropriate.	nly one is correct. You have to select the correct answer which is the
1. The order of the differential equation whose general solution is given by $y = (c_1 + c_2) \cos(x + c_3) - c_4 \cdot e^{x + c_5}$, where c_1, c_2, c_3, c_4 , and c_5 are arbitrary constants, is (a) 2 (b) 3 (c) 4 (d) 5 2. If $y = c_1 e^{2x} + c_2 e^x + c_3 e^{-x}$ satisfies the differential equation $\frac{d^3y}{dx^3} + a \frac{d^2y}{dx^2} + b \frac{dy}{dx} + cy = 0$, then $\frac{a^3 + b^3 + c^3}{abc}$ is equal to (a) $-\frac{1}{4}$ (b) $-\frac{1}{2}$ (c) 0 (d) $\frac{1}{2}$	(b) $xy + y \ln x + x \sin y = c$ (c) $y + x \ln x + x \sin y = c$ (d) $xy + x \ln x + y \sin y = c$ (where c is arbitrary constant) 7. Solution of differential equation $(x \cos x - \sin x) dx = \frac{x}{y} \sin x dy$ is (a) $\sin x = \ln xy + c$ (b) $\ln \left \frac{\sin x}{x} \right = y + c$ (c) $\left \frac{\sin x}{xy} \right = c$ (d) none of these (where c is arbitrary constant)
3. The order and degree of the differential equation whose general solution is given by $d^2x (dx)^{50} (d^2x)$	8. Solution of $\left(\frac{x+y-1}{x+y-2}\right)\frac{dy}{dx} = \left(\frac{x+y+1}{x+y+2}\right)$, given that $y = 1$
$\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^{50} = \ln\left(\frac{d^2y}{dx^2}\right) \text{respectively are}$ (a) 2, 1 (b) 2, 50 (c) 50, 2 (d) none of these 4. The degree and order of the differential equation of all parabolas, whose axis is x-axis are respectively (a) 1, 2 (b) 2, 1 (c) 3, 2 (d) 2, 3 $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^{50} = \ln\left(\frac{d^2y}{dx^2}\right) \text{respectively are}$	when $x = 1$ is (a) $\ln \left \frac{(x - y)^2 - 2}{2} \right = 2(x + y)$ (b) $\ln \left \frac{(x + y)^2 - 2}{2} \right = 2(x - y)$ (c) $\ln \left \frac{(x - y)^2 + 2}{2} \right = 2(x + y)$
5. Solution of the differential equation $\frac{dy}{dx} = \frac{y(x - y \ln y)}{x(x \ln x - y)}$	(d) $\ln \left \frac{(x+y)^2 + 2}{2} \right = 2(x-y)$
is (a) $\frac{x \ln x + y \ln y}{xy} = c$ (b) $\frac{x \ln x - y \ln y}{xy} = c$ (c) $\frac{\ln x}{x} + \frac{\ln y}{y} = c$ (d) $\frac{\ln x}{x} - \frac{\ln y}{y} = c$	9. The solution of $y^5x + y - x\frac{dy}{dx} = 0$ is
	(a) $\frac{y^5}{5} + \frac{y^4}{4x^4} = c$ (b) $\frac{x^4}{4} + \frac{x^5}{5y^5} = c$
(where c is arbitrary constant) 6. The solution of the differential equation $\{y (1 + x^{-1}) + \sin y\} dx + (x + \ln x + x \cos y) dy = 0$ is	(c) $\frac{y^4}{4} + \frac{y^5}{5x^5} = c$ (d) $\frac{x^5}{5} + \frac{x^4}{4y^4} = c$
(a) $x + y \ln x + y \sin x = c$	(where c is arbitrary constant)

10. The solution of the equation

$$\frac{dy}{dx} + x(x+y) = x^3 (x+y)^3 - 1 \text{ is}$$
(a) $\frac{1}{(x+y)^2} = x^2 + 1 + ce^x$ (b) $\frac{1}{(x+y)} = x^2 + 1 + ce^x$
(c) $\frac{1}{(x+y)^2} = x^2 + 1 + ce^{x^2}$ (d) $\frac{1}{(x+y)} = x^2 + 1 + ce^{x^2}$

(where c is arbitrary constant) 11. Solution of the differential equation

 $\begin{bmatrix} 1 & y^2 \end{bmatrix}$, $\begin{bmatrix} x^2 & 1 \end{bmatrix}$

$$\begin{cases} \frac{1}{x} - \frac{y}{(x-y)^2} \end{bmatrix} dx + \begin{cases} \frac{x}{(x-y)^2} - \frac{x}{y} \end{bmatrix} dy = 0 \text{ is} \\ (a) \ln \left| \frac{x}{y} \right| + \frac{xy}{(x-y)} = c \\ (b) \ln |xy| + \frac{xy}{(x-y)} = c \end{cases}$$

$$(c) \frac{xy}{(x-y)} = ce^{x/y} \qquad (d) \frac{xy}{(x-y)} = ce^{xy}$$

(where c is arbitrary constant)

12. The real value of *n* for which the substitution $y = u^n$ will transform the differential equation $2x^4y \frac{dy}{dx} + y^4 = 4x^6$

into a homogeneous equation is

- (a) 1/2 (b) 1 (c) 3/2 (d) 2
- 13. The equation of the curve in which the portion of y-axis cut off between the origin and the tangent varies as the cube of the abscissa of the point of contact is

(a)
$$y = \frac{kx^3}{3} + cx$$
 (b) $y = -\frac{kx^2}{2} + c$
(c) $y = -\frac{kx^3}{2} + cx$ (d) $y = \frac{kx^3}{3} + \frac{cx^3}{2}$

(k is constant of proportionality)

(where c is arbitrary constant)

14. The equation of the curve for which the square of the ordinate is twice the rectangle contained by the abscissa and the intercept of the normal on x -axis and passing through (2, 1) is

(a) $x^{2} + y^{2} - x = 0$ (b) $4x^{2} + 2y^{2} - 9y = 0$ (c) $2x^{2} + 4y^{2} - 9x = 0$ (d) $4x^{2} + 2y^{2} - 9x = 0$

15. A curve y = f(x) passes through the point P(1, 1). The normal to the curve at point P is a(y-1) + (x-1) = 0. If the slope of the tangent at any point on the curve is proportional to the ordinate at that point, then the equation of the cuve is

(a)
$$y = e^{ax} - 1$$
 (b) $y = e^{ax} + 1$
(c) $y = e^{ax} + a$ (d) $y = e^{a(x-1)}$

16. If y = f(x) passing through (1, 2) satisfies the differential equation y (1 + xy) dx - x dy = 0, then

(a)
$$f(x) = \frac{2x}{2 - x^2}$$
 (b) $f(x) = \frac{x + 1}{x^2 + 1}$
(c) $f(x) = \frac{x - 1}{4 - x^2}$ (d) $f(x) = \frac{4x}{1 - 2x^2}$

- 17. The differential equation representing the family of the curves $y^2 = 2c (x + \sqrt{c})$, where c is a positive parameter, is of
- (a) order 1, degree 3 (b) order 2, degree 2 (c) order 3, degree 3 (d) order 4, degree 4 18. The solution of the differential equation $\frac{dy}{dx} = \frac{y}{x} + \frac{\phi(y/x)}{\phi'(y/x)}$ is (a) $x \phi(y/x) = k$ (b) $\phi(y/x) = kx$
 - (c) $y \phi(y/x) = k$ (d) $\phi(y/x) = ky$ (k is arbitrary constant)
- 19. Let a and b be respectively the degree and order of the differential equation of the family of circles touching the lines $y^2 x^2 = 0$ and lying in the first and second quadrant, then
 - (a) a = 1, b = 2(b) a = 1, b = 1(c) a = 2, b = 1(d) a = 2, b = 2
 - 20. The integrating factor of the differential equation $\frac{dy}{dx}(x \log_e x) + y = 2 \log_e x$ is given by
 - dx
 - (a) x
 - (c) $\log_e x$ (d) $\log_e (\log_e x)$

(b) e^x

- 21. A differential equation associated with the primitive $y = a + be^{5x} + ce^{-7x}$ is
 - (a) $y_3 + 2y_2 y_1 = 0$ (b) $y_3 + 2y_2 - 35y_1 = 0$ (c) $4y_3 + 5y_2 - 20y_1 = 0$ (d) none of these
- 22. A continuously differentiable function $y = f(x), x \in (0, \pi)$ satisfying $y' = 1 + y^2, y(0) = 0 = y(\pi)$ is
 - (a) $\tan x$ (b) $x(x-\pi)$ (c) $(x-\pi)(1-e^x)$ (d) not possible
- 23. The largest value of c such that there exists a differential function h(x) for -c < x < c that is a solution of $y_1 = 1 + y^2$ with h(0) = 0 is
 - (a) 2π (b) π (c) $\frac{\pi}{2}$ (d) $\frac{\pi}{4}$
- 24. The form of the differential equation of all central conics is

(a)
$$x = y \frac{dy}{dx}$$

(b) $x + y \frac{dy}{dx} = 0$
(c) $x \left(\frac{dy}{dx}\right)^2 + xy \frac{d^2y}{dx^2} = y \frac{dy}{dx}$

- (d) none of the above
- 25. The particular solution of the differential equation y'+3xy = x which passes through (0, 4) is

(a)
$$y = 1 - 11e^{-3x^2/2}$$

(b) $3y = 1 + 11e^{-3x^2/2}$
(c) $3y = 1 - 11e^{-3x^2/2}$
(d) none of these

0																			
Object	ive Qu	estion	s Typ	e I [Only	y one co	orrect a	answer]							Nierr 9				There	
1.	(b)	2.	(a)	3.	(d)	4.	(a)	5.	(a)	6.	(b)	7.	(c)	8.	(b)	9.	(d)	10.	(c)
11.	(a)	12.	(c)	13.	(c)	14.	(d)	15.	(d)	16.	(a)	17.	(a)	18.	(b)	19.	(c)	20.	(c)
21.	(b)	22.	(a)	23.	(c)	24.	(c)	25.	(b)									PAGI	E#15